The Outlook for CO₂ Capture and Storage

And Its Role in a Low-Carbon Energy Future

Edward S. Rubin

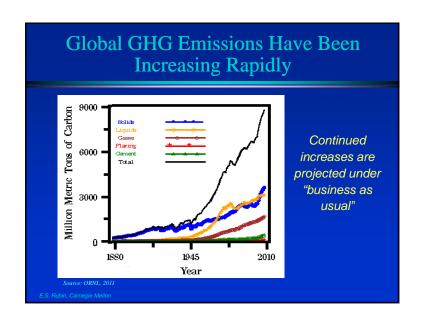
Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

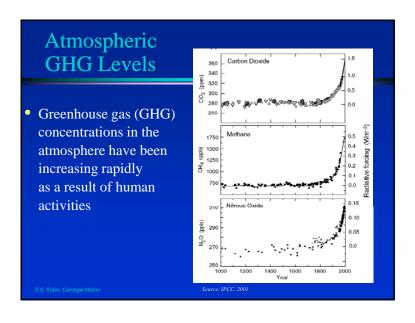
Guest Lecture 19-656: CO_2 Capture and Sequestration Carnegie Mellon University February 6, 2014

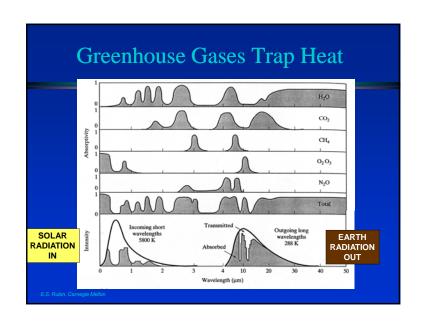
The problem of global climate change

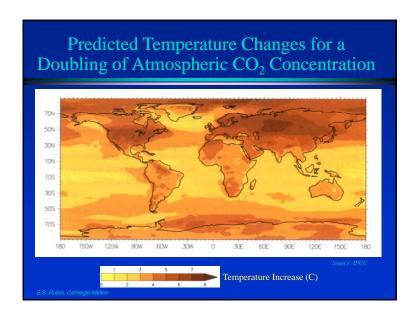
Outline of Talk

- The problem of climate change
- Why the interest in CCS?
- The good news
- The not-so-good news
- Future outlook


E.S. Rubin, Camedie Mellon


Major Greenhouse Gases (GHGs) Emitted from Human Activities


Symbol	Name	Common Sources
CO ₂	Carbon Dioxide	Fossil fuel combustion, forest clearing, cement production, etc.
CH₄	Methane	Landfills, production and distribution of natural gas & petroleum, fermentation from the digestive system of livestock, rice cultivation, fossil fuel combustion, etc.
N ₂ O	Nitrous Oxide	Fossil fuel combustion, fertilizers, nylon production, manure, etc.
HFC's	Hydrofluorocarbons	Refrigeration gases, aluminum smelting, semiconductor manufacturing, etc.
PFC's	Perflourocarbons	Aluminum production, semiconductor industry, etc.
SF ₆	Sulfur Hexafluoride	Electrical transmissions and distribution systems, circuit breakers, magnesium production, etc.


Unlike "conventional" air pollutants, GHGs—once emitted—are not easily removed. Most remain in the atmosphere for centuries.

S. Rubin, Carnegie Melloi

Increased nater availability in maint tropics and high latitudes WATER Increased nater availability in maint tropics and high latitudes Decreating water availability and increasing drought in mid-failtudes and semi-and low latitudes Hundreds of millions of people exposed to increase water stress Up to 20% of species at increasing the defendance of extenction increasing that of extenction increasing the constitution of extenction increasing that increasing the extendition in the latitudes increased increasing that increasing the extendition in the latitudes increasing that increasing the extendition in the latitudes in the latitudes

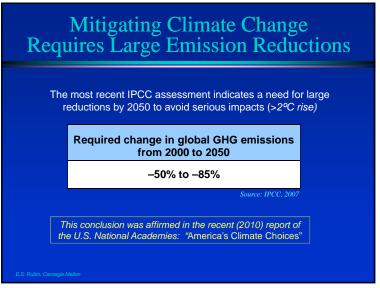
The Climate Policy Driver

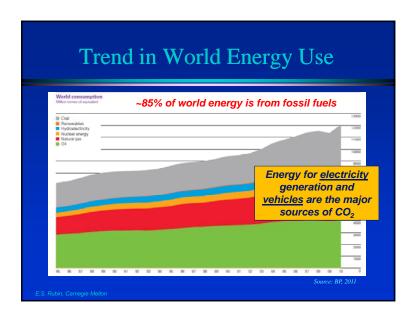
 1992 U.N. Framework Convention on Climate Change called for "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

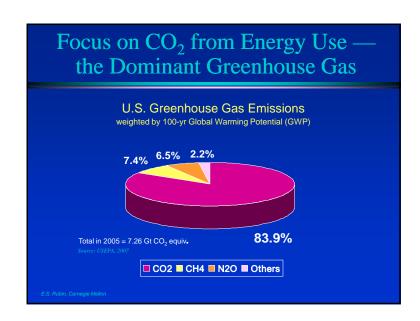
*192 countries are parties to the convention

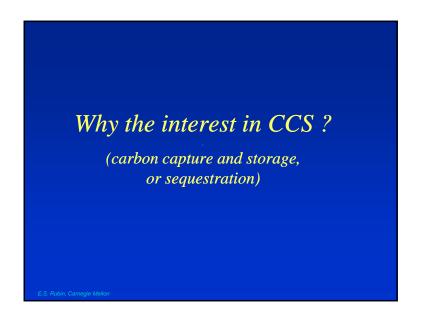
E.S. Rubin, Carnegie Mello

Implication of Stabilization


- Because of their long atmospheric lifetimes (typically measured in centuries), stabilizing current GHG *emissions* is not sufficient to stabilize atmospheric <u>concentrations</u>
- Global emissions must be reduced significantly, no matter what stabilization target is selected!


Analogy: To stabilize the water level in a slow-draining tub, the open faucets must be tightened to a trickle

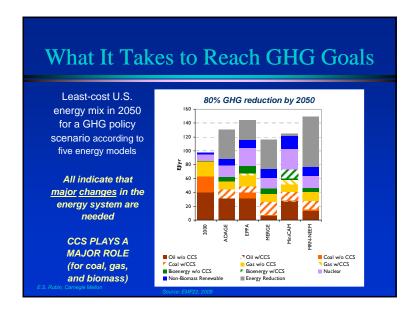



S. Rubin, Carnegie Melloi

Mitigating Climate Change Requires Large Emission Reductions The most recent IPCC assessment indicates a need for large reductions by 2050 to avoid serious impacts (>2°C rise) Required change in global GHG emissions from 2000 to 2050 -50% to -85% Source: IPCC, 2007 This conclusion was affirmed in the recent (2010) report of the U.S. National Academies: "America's Climate Choices"

Options to Mitigate CO₂ Emissions

- Reduce the demand for energy used in buildings, transportation, and industrial activities
- Improve the efficiency of energy conversion and utilization, so less fuel is needed to meet demands
- Produce and use alternative energy sources with low or no GHG emissions
- Capture and sequestration CO₂ at large industrial sources to prevent its release to the atmosphere

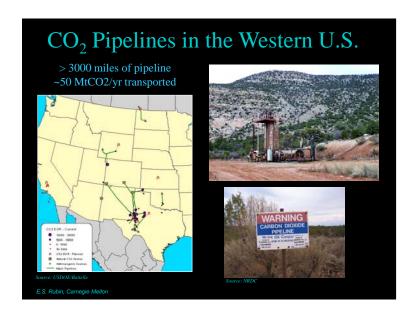

E.S. Rubin, Carnegie Mellor

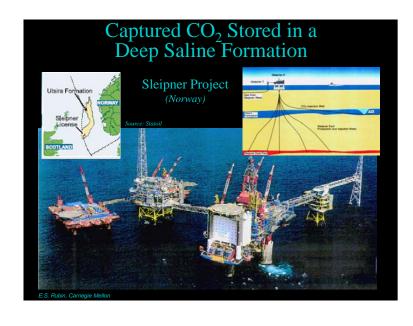
Schematic of a CCS System Air or Fuels Oxygen CO₂ Storage Capture & (Sequestration) Compress Process - Post-combustion - Depleted oil/gas fields - Pipeline Useful - Pre-combustion - Deep saline formations Products - Oxy-combustion (Electricity, Fuels, Chemicals, Hydrogen)

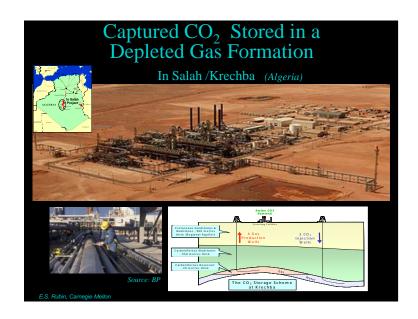
Motivation for CCS

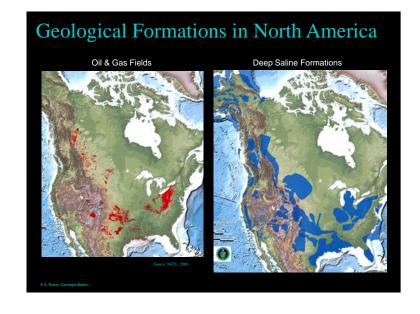
- CCS is the <u>ONLY</u> way to get large CO₂ reductions from continued use of fossil fuels—a potential bridging strategy to a <u>sustainable</u> energy future
- CCS can also help decarbonize the transportation sector (via low-carbon electricity and hydrogen from fossil fuels)

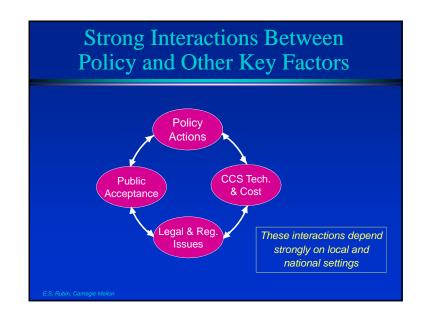
E.S. Ruhin, Carnegie Mellr



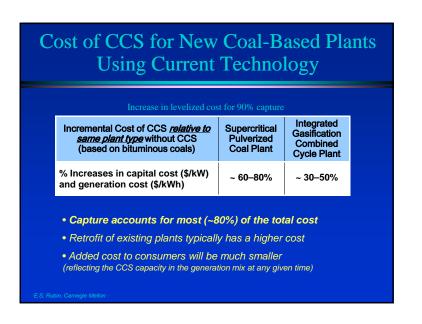







The Not-So-Good News

Current CCS Technology


- Is relatively expensive at present
- Not yet proven at full-scale power plants
- Some remaining legal and regulatory issues
- Uncertain public acceptance in some areas
- Few if any incentives to deploy CCS

S Rubin Camenie Mellor

Key Barriers to CCS Deployment Policy Policy Policy Without a policy requirement or incentive there is little or no reason to deploy CCS

What If We Could Make it Cheaper? Measures of CCS Cost: Increased cost of electricity Cost of CO₂ avoided Cost of CO₂ captured Capital cost Dispatch (variable) cost

CCS Cost for New NGCC Plants (Current Technology)

Increase in levelized cost for 90% capture

Cost Measure	New NGCC Cost Increase with CCS
% Increase in generation cost (\$/kWh) (relative to NGCC w/o CCS)	~ 30–45%
Cost of CO ₂ Avoided: Relative to NGCC: Relative to SCPC:	~\$100 /tCO ₂ ~\$40 /tCO ₂

E.S. Rubin, Carnegie Mello

Definition of Key Costs

• Cost of CO₂ Avoided (\$/ton CO₂ avoided)

$$= \frac{(\$/MWh)_{ccs} - (\$/MWh)_{reference}}{(CO_2/MWh)_{ref} - (CO_2/MWh)_{ccs}}$$

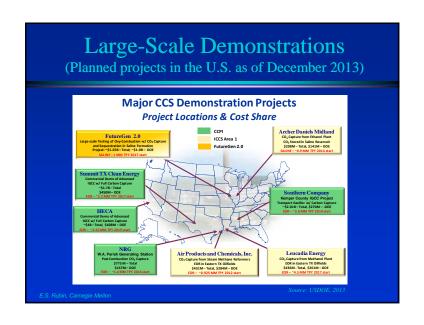
• Cost of Electricity Generation (\$/MWh)

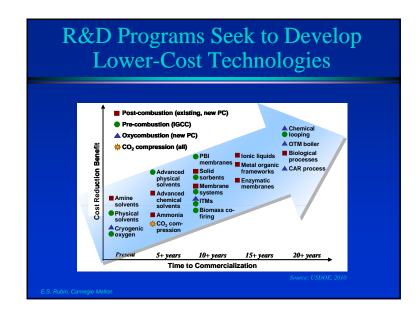
$$= \frac{(TCC)(FCF) + FOM}{(CF)(8760)(MW)} + VOM + (HR)(FC)$$

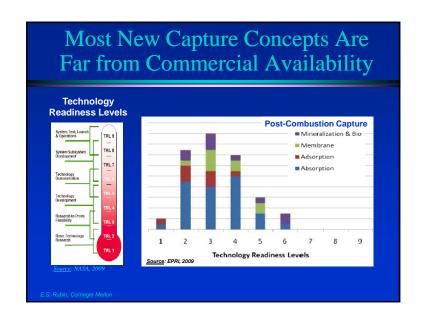
Many factors influence the cost of CCS

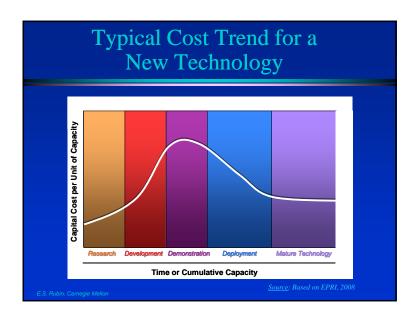
E.S. Rubin, Carnegie Mellon

Ten Ways to Reduce CCS Cost


(inspired by D. Letterman

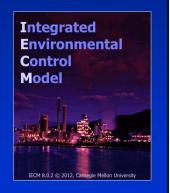

- 10. Assume high power plant efficiency
- 9. Assume high-quality fuel properties
- 8. Assume low fuel price
- 7. Assume EOR credits for CO₂ storage
- 6. Omit certain capital costs
- 5. Report \$/ton CO₂ based on short tons
- 4. Assume long plant lifetime
- 3. Assume low interest rate (discount rate)
- 2. Assume high plant utilization (capacity factor)
- 1. Assume all of the above!


... and we have not yet considered the CCS technology!


Future Outlook

F.S. Ruhin, Camedie Mello

Two Approaches to Estimating Future Technology Costs


- <u>Method 1</u>: Engineering-Economic Analysis
 - A "bottom up" approach based on engineering process models, informed by judgments regarding potential improvements in key process parameters
- Method 2: Use of Historical Experience Curves
 - A "top down" approach based on applications of mathematical "learning curves" or "experience curves" that reflect historical trends for analogous technologies or systems

E.S. Rubin, Camedie Mellon

Estimated Cost of Two Advanced CO₂ Capture Systems Sweep-based Membrane System for Post-combustion Capture Membrane CO₂ Permeance (gpu) 1000 Chemical Looping Combustion System for Pre-combustion Capture System for Pre-combustion Capture E.S. Rubin, Campie Meiton

IECM: A Tool for Analyzing Power Plant Design Options

- A desktop/laptop computer simulation model developed for DOE/NETL
- Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
- Free and publicly available at: www.iecm-online.com

Historical Experience Curves for FGD and SCR Capital Costs Substantial reductions Normalized Capital Cos seen in the cost of $y = 1.41x^{-0.22}$ FGD $R^2 = 0.76$ doing the same job at $y = 1.45x^{-0.17}$ different points in $R^2 = 0.79$ time for the same Cost reductions of ~12% per power plant and fuel doubling of installed capacity (~ 50% reduction in 20 years) specifications 10 100 Worldwide Installed Capacity at Coal-Fired Utility Plant (GWe)

Application of Experience Curves to Future CCS Costs

(Percent cost reduction, 2001–2050, based on energy-economic modeling)*

Power Plant System	Reduction in Cost of Electricity (\$/MWh)	Reduction in Mitigation Cost (\$/tCO ₂ avoided)
NGCC - CCS	12% – 40%	13% – 60%
IGCC – CCS	22% – 52%	19% – 58%
PC - CCS	14% – 44%	19% – 62%

^{*} Range based on low and high global carbon price scenarios

Source: van der Brock et al, 2010

F.S. Rubin, Carnegie Mellon

Will CCS Save the Day?

- Very likely to soon see several largescale demos of CCS, with continued R&D support; but ...
- Widespread use will require strong policy drivers that create markets for CCS
- WATCH THIS SPACE FOR UPDATES

E.S. Rubin, Carnegie Mello

Conclusions from CCS Cost Studies

• There is significant technical potential to reduce the cost of CCS for power plants and other industrial applications

but ...

 Realization of that potential will require significant commercial deployment of CCS together with sustained R&D

E.S. Rubin, Carnegie Mellon

Thank You

rubin@cmu.edu

E.S. Rubin, Carnegie Mello